教育部/科技部 高等教育深耕計畫 特色領域研究中心計畫

About Us中心介紹

[六大主軸]

      Hi-GEM具體整合國內材料、化工、電機、光電、物理、工業設計等學術專業,跨領域展開包含(I)全固態電池、(II)二次電池、(III)超級電容、(IV)太陽能電池、(V)燃料電池、(VI)產業鏈結等六大主軸計畫,來達成我國【關鍵綠能材料自主化】的目標。同時,奠基於扎實的核心技術,包含新型光電活性材料的開發與改質,電極材料的開發、改質與界面修飾,以及電解質材料的離子導性提升與穩定性提升等。學理上掌握關鍵零組件的共性核心技術,便可開發新穎綠能材料,應用在各式創能與儲能綠能元件上。在以產業影響面向上,以a.產品設計與b.產業外溢兩項商品化策略落實該中心對國家、產業的實質貢獻。

  

      除了上述學術副主任主責的各主軸學術研究任務外,為達成教育部/科技部在人才培育、國際連結與產業鏈結等的要求,中心於108年起在產學副主任下設立電力管理組、產品設計組及產學推動組三組,以及在行政副主任下設國際合作組、人才培育組、一般行政組等,共同分工及推動教育和科技兩部的各項指標,也希望如此可以使大部分的成員老師可以更專注在學術研究與技術開發。

產學副主任(陳建富) 電力管理組 梁從主
產品設計組 陳建旭
產學推動組 黃嘉云 (成大南科研發中心經理)
行政副主任(林士剛) 國際合作組 方冠榮
人才培育組 許文東
一般行政組 林士剛(兼)

 

 

[關鍵材料開發]

    國立成功大學於“替代能源領域”世界排名第19名(alternative energy field, Elsevier),本中心26位成員在綠能材料領域研究能量極高。提升「關鍵材料自主率」為當前所需改善的技術困境,本中心規劃以跨尺度計算材料之材料基因方法,達成綠能關鍵材料設計;開發膠固態電解質、高性能高穩定性電極材料、高效率光電活性材料等關鍵綠能材料;發展儲能設備、電力管理系統與創意電池組合設計等。以下分四種元件產業技術簡述之。

1. 鋰離子固態電池產業技術

      目前世界各國車廠,皆以發展高安全性之鋰離子固態電池為目標。本中心團隊成員所開發之聚醚胺高分子系列的固態電解質材料可發展為高安全性鋰離子二次電池,並將配合工研院 LTO/NMC電池,並與電池相關廠商合作開發膠態電解質設備;固相法合成無機石榴石型Li6.2La3Zr1.8Al0.2Ta0.2O12 (LLZO)固體電解質。此固體電解質在室溫下離子導電度為10-4S/cm。在無機陶瓷電解質與陰極(LiFePO4)之間和陽極鋰金屬間界面導入高分子,可降低界面間離子傳導阻力。經最佳化的高分子合成比例,此無機陶瓷-GPE複合物電解質在室溫0.05 mA/cm2的放電容量可達165 mAh/g,此為重大突破。

安全電池 – 全固態電池示意圖

與膠固態電解質相關之本中心成員研究成果,包括:

  • Chen, Y.-M.; Hsu, S.-T.; Tseng, Y.-H.; Yeh, T.-F.; Hou, S.-S.; Jan, J.-S.; Lee, Y.-L; Teng, H., “Minimization of ion–solvent clusters in gel electrolytes containing graphene oxide quantum dots for lithium-ion batteries” Small, 14, 1703571 (2018).
  • Lin, Y. Y.; Chen, Y. M.; Hou, S. S.; Jan, J. S.; Lee, Y. L.; Teng, H.*“Diode-Like Gel Polymer Electrolytes for Full-Cell Lithium Ion Batteries”, Journal of Materials Chemistry A, 5, 17476-17481 (2017).
  • Huang, L.Y.; Shih, Y.C.; Wang, S.H.; Kuo, P.L.; Teng, H., “Gel Electrolytes Based on an Ether-Abundant Polymeric Framework for High-Rate and Long-Cycle-Life Lithium Ion Batteries”, Journal of Materials Chemistry A, Vol. 2, 10492-10501 (2014).
  • Sheng-Shu Hou, Nai-Shin Fan, Yu-Chao Tseng, and Jeng-Shiung Jan, Self-Assembly and Hydrogelation of Coil-Sheet Poly(L-Lysine)-block-Poly(L-Threonine) Block Copolypeptides. Macromolecules, 51, 8054-8063 (2018).
  • Xuan-You Shen, Chen-Chi Tang, Jeng-Shiung Jan, Synthesis and hydrogelation of star-shaped poly(L-lysine) polypeptides modified with different groups, Polymer, 151, 108-116 (2018).
  • Yu-Lin Tsai, Yu-Chao Tseng, Yan-Miao Chen, Tain-Ching Wen, Jeng-Shiung Jan, Zwitterionic Polypeptides Bearing Carboxybetaine and Sulfobetaine: Synthesis, Self-Assembly, and Their Interactions with Proteins. Polymer Chemistry, 9, 1178–1189 (2018).
  • Chih-Hao Tsao, E-Ting Wu, Wei-Hsun Lee, Chi-cheng Chiu, and Ping-Lin Kuo, “Fluorinated Copolymer Functionalized with Ethylene Oxide as Novel Water-Borne Binder for a High-Power Lithium Ion Battery: Synthesis, Mechanism, and Application”, ACS Appl. Energy Mater. 2018, 1, 3999−4008.
  • Tian, CA, Chiu, CC, “Importance of Hydrophilic Groups on Modulating the Structural, Mechanical, and Interfacial Properties of Bilayers: A Comparative Molecular Dynamics Study of Phosphatidylcholine and Ion Pair Amphiphile Membranes”, Int. J. Mol. Sci. 2018 Jun; 19(6): 1552.
  • Graft copolymer, process for producing the graft copolymer, process for preparing a gel polymer electrolyte including the graft copolymer, and intermediate copolymer of the graft copolymer , 美國專利,獲准日期30/1/2018,US9882240B2.

 

2. 鋰離子電池材料產業技術

      基於綠色能源發展,歐盟、美國等國家急需汰換鉛酸電池,因此這些地區具備龐大儲能市場並且我們有機會藉由計畫執行將性能達標電解質材料進行商業化評估。本中心研究團隊已成功開發高比容量電池矽碳負極材料,並改善矽在鋰離子遷入與遷出的充放電過程中體積強烈變化(一般 > 300%)的缺點。一次充放電後,電容量僅損失3成,且在後續的充放電過程中幾乎不再損失;目前已與中鋼碳素公司達成產學合作,將共同進行電動車用平台之車用鋰離子電池矽碳負極材料開發;同時也通過教育部「建構大學衍生新創研發服務公司之孕育機制產業創新研發計畫」,將借助中鋼碳素公司的粉體生產經驗進行相關製程改善;透過此技術,成立新創公司,矽力能股份有限公司(SiLican)。另一方面,我們亦計畫發展出於高SoC時仍能保持穩定性且無鈷的層狀正極材料與相關之鋰離子電池正極材料技術;並開發出二次電池電解液篩選機械學習相關技術,在Python程式語言下學習並預測不同結構分子的電解液樣化還原性質。

二次電池 – SiLican新創公司使用Si-C負極材料製成之軟包電池,

於成大防火中心組裝、量產

與鋰離子電池相關之本中心成員研究成果,包括:

  • Shang-Chieh Hou, Tsan-Yao Chen, Yu-Hsien Wu, Hung-Yuan Chen, Xin-Dian Lin, Yu-Qi Chen, Jow-Lay Huang & Chia-Chin Chang, “Mechanochemical synthesis of Si/Cu3Si-based composite as negative electrode materials for lithium ion battery”, Sci Rep. 2018 Aug 23;8(1):12695.

  • Chia Chin Chang, Li-Chia Chen, Tai-Ying Hung, Yuh-Fan Su, Huang-Kai Su, Jarrn-Horng Lin, Chih-Wei Hu, L. Saravanan, Tsan-Yao Chen, “Nano-sized Tin Oxide-Modified Graphite Composite as Efficient Anode Material for Lithium Ion Batteries”, Int. J. Electrochem. Sci., 13 (2018) 11762 – 11776.

  • Yin-Wei Cheng, Chun-Hung Chen, Shu-Wei Yang, Yi-Chang Li, Bo-Liang Peng, Chia-Chin Chang, Ruey-Chi Wang & Chuan-Pu Liu, “Freestanding Three-Dimensional CuO/NiO Core–Shell Nanowire Arrays as High-Performance Lithium-Ion Battery Anode”, Scientific Reports, volume 8, Article number: 18034 (2018).

  • Chiun-Yan Lin, Ming-Hsun Lee, and Ming-Fa Lin, “Coulomb excitations in ABC-stacked trilayer graphene”, Phys. Rev. B 98, 041408(R) (2018).

  • R.-N. Nasara, P.-C. Tsai, and S.-K. Lin. "One‐Step Synthesis of Highly Oxygen‐Deficient Lithium Titanate Oxide with Conformal Amorphous Carbon Coating as Anode Material for Lithium Ion Batteries." Adv. Mater. Interfaces. 2017, 1700329, (2017).

  • P.-C. Tsai, S.-C. Chung, S.-K. Lin and A. Yamada, "Ab initio study of sodium intercalation into disordered carbon," J. Mater. Chem. A, 3, 9763-9768, (2015).

  • Chih-Hao Tsao; Chun-Han Hsu; Jing-De Zhou; Chia-Wei Chin; Ping-Lin Kuo “Vulcanized Polymeric Cathode Material Featuring a Polyaniline Skeleton for High-Rate Rechargeability and Long-Cycle Stability Lithium-Sulfur Batteries” Electrochimica Acta 2018, 276, 111-117.

  • Anteneh Wodaje Bayeh,  Daniel Manaye Kabtamu,  Yu-Chung Chang,  Guan-Cheng Chen,  Hsueh-Yu Chen,  Guan-Yi Lin,  Ting-Ruei Liu,  Tadele Hunde Wondimu,  Kai-Chin Wang  and  Chen-Hao Wang, “Synergistic Effects of TiNb2O7 -reduced Graphene Oxide Nanocomposite Electrocatalyst for High-performance All-vanadium Redox Flow Battery”, J. Mater. Chem. A, 2018, 6, 13908-13917.

  •  Kabtamu, DM; Bayeh, AW ; Chiang, TC ; Chang, YC ; Lin, GY ; Wondimu, TH; Su, SK; Wang, CH, “TiNb2O7 nanoparticle-decorated graphite felt as a high-performance electrode for vanadium redox flow batteries”, Applied Surface Science 462 (2018) 73–80.

  • Ngoc Thanh Thuy Tran, Shih Yang Lin, Chiun Yan Lin, Min-Fa Lin, “Geometric and electronic properties of graphene-related systems: Chemical bonding schemes”, CRC Press. (2017).

 

3. 太陽能電池產業技術

      在染料敏化太陽能電池技術上,因使用液態溶劑的關係,其使用壽命較短以及無法量產是產業的重大問題。本中心研究團隊在膠態電解質材料的開發,並將其應用於太陽光源及室內環境的光電轉換。在膠態電解質的開發上,本團隊利用高分子材料的選擇,創新製作印刷式的膠態電解質,以改進傳統膠態電解質灌注不易的問題。此一印刷式電解質的開發亦可改進傳統DSSC的生產程序,可適用於將來捲軸式(role-to-role)生產程序的開發,預期對DSSC的生產會有很大的助益;另一方面,本中心團隊成員所開發的新型態鈣鈦礦太陽能電池光電轉換效率領先世界,二維/三維混成鈣鈦礦太陽能電池轉換效率達19.1%,Porphyrin HTM的鈣鈦礦太陽能電池轉換效率達19.4%,為目前使用Porphyrin HTM的鈣鈦礦太陽能電池中的最高效率。

太陽能電池 – 利用印刷式製程所製作的膠態染料敏化太陽能電池(DSSC)模組,可用於捲對捲(roll-to-roll)大量生產

與太陽能電池相關之本中心成員研究成果,包括:

 

  • Shanmuganathan Venkatesan, Elmer Surya Darlim, Ming-Hsiang Tsai, Hsisheng Teng, and Yuh-Lang Lee, “Graphene Oxide Sponge as Nanofillers in Printable Electrolytes in High-Performance Quasi-Solid-State Dye-Sensitized Solar Cells”, ACS Appl. Mater. Interfaces 2018, 10, 13, 10955-10964.
  • Shanmuganathan Venkatesan,  I.-Ping Liu,  Jian-Ci Lin,  Ming-Hsiang Tsai,  Hsisheng Teng  and  Yuh-Lang Lee, “Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA)-based printable electrolytes”, J. Mater. Chem. A, 2018,6, 10085-10094.
  • Ming Hsien Li, Hung Hsiang Yeh, Yu Hsien Chiang, U. Ser Jeng, Chun Jen Su, Hung Wei Shiu, Yao Jane Hsu, Nobuhiro Kosugi, Takuji Ohigashi, Yu An Chen, Po Shen Shen, Chao-Yu Chen, Tzung-Fang Guo, “Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process”, Adv Mater. 2018 Jul;30(30):e1801401.
  • Yu-Hsien Chiang, Hsien-Hsin Chou, Wei-Ting Cheng, Yun-Ru Li, Chen-Yu Yeh, and Peter Chen, “Porphyrin Dimers as Hole-Transporting Layers for High-Efficiency and Stable Perovskite Solar Cells”, ACS Energy Lett., 2018, 3 (7), pp 1620–1626.
  • Hsuan-TaWu, Wu, HT; Chen, YF ; Shih, CF; Leu, CC; Wu, SH, “Memory properties of (110) preferring oriented CH3NH3PbI3 perovskite film prepared using PbS-buffered three-step growth method”, Thin Solid Films, 660, 320-327 (2018)
  • Chien-Hsin Tang, Tang, CH, Chen, KY, Chen, CY, “Solution-processed ZnO/Si based heterostructures with enhanced photocatalytic performance”, New J. Chem., 2018, 42, 13797-13802.

4. 燃料電池產業技術

      本中心團隊成功開發燃料電池材料奈米化技術,以複合材之概念,進行電極材料之改質,優化電極材料製備技術,從而改善SOFC性能和循環穩定性。不但降低高溫型燃料電池極化電阻(< 0.3 Ω*cm2)與操作溫度,也將電池堆組件 (5x5~10x10cm2)的功率密度由700W/cm2提升至800W/cm2、模組化電池之發電功率可由50W推進至60W。

燃料電池 – 薄膜化及波浪設計之中低溫操作高效率氧化物燃料電池

與燃料電池相關之本中心成員研究成果,包括:

  • Jarosław Milewski, Tomasz Wejrzanowski, Kuan-Zong Fung, Łukasz Szabłowski, Robert Baron, Jhih Yu Tang, Arkadiusz Szczęśniak, Chung Ta Ni, “Temperature influence on six layers samaria doped ceria matrix impregnated by lithium/potassium electrolyte for Molten Carbonate Fuel Cells.”, International Journal of Hydrogen Energy43(1), 474-482 (2018).
  • Robert Baron, Tomasz Wejrzanowski, Jarosław Milewski, Łukasz Szabłowski, Arkadiusz Szczęśniak, Kuan-Zong Fung, “Manufacturing of Γ-LiAlO2matrix for molten carbonate fuel cell by high-energy milling.”, International Journal of Hydrogen Energy43(13), 6696-6700 (2018). 
  • Chi-Yang Liu, Shu-Yi Tsai, Chung-Ta Ni, Kuan-Zong Fung, “Interfacial reaction between YSZ electrolyte and La7Sr0.3VO3 perovskite anode for application.”, Journal of the Australian Ceramic Society, Jul. 2018.
  • I-Ming Hung, Yu-Ting Chiou, Yi-Hung Wang, Tai-Nan Lin, “Synthesis and Characterization of Bi85-xCa0.15ZrxO1.5-delta Oxygen Ion Conductors”, Journal of Elec Mater. (2018) 47: 5833.